Indian Statistical Institute, Bangalore B. Math II, First Semester, 2024-25 Supplementary Mid-semester Examination, Introduction to Statistical Inference 09.10.24 Maximum Score 65 Duration: 2 Hours

1. (10) Let X_1, \dots, X_n be independent random variables with the following densities

$$f_{X_k}(x) = \frac{1}{2k\theta}$$
 for $-k(\theta - 1) < x < k(\theta + 1)$

Show that $(\max \frac{x_k}{k}, \min \frac{x_k}{k})$ is sufficient statistic for θ .

- 2. (15) Let X_1, \dots, X_n be i.i.d. observations from $Unif([0, \theta])$.
 - (a) Show that the Pareto distribution, given below as π , is a conjugate prior.

$$\pi(\theta|\alpha,\beta) = \frac{\alpha\beta^{\alpha}}{\theta^{\alpha+1}}, \theta \ge \beta > 0$$

- (b) Find the posterior mean of θ under the Pareto (α, β) prior.
- 3. (10) Let $\mathbf{X} \sim Bin(n, \frac{1}{4})$.
 - (a) Find the MLE of n when $\mathbf{X} = 5$.
 - (b) Find the MoM estimator for n when $\mathbf{X} = 5$.
- 4. (15) Let X_1, \dots, X_n be iid Exponential(λ) random variables, with pdf of X_1 being $\lambda e^{-\lambda x}$ for x > 0.
 - (a) Show that \bar{X} attains the Cramer-Rao lower bound.
 - (b) Hence conclude that \bar{X} is UMVUE for $1/\lambda$.
- 5. (15) Consider the bivariate normal density

$$h(x,y) = \frac{1}{2\pi} \exp\left\{-\frac{1}{2}\left(x^2 + 2y^2 - 2xy - 2x - 6y + 17\right)\right\}$$

Find the mean vector and the covariance matrix.